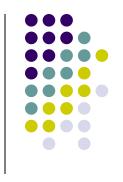
Universal Low-rank Matrix Recovery using Pauli Measurements

Yi-Kai Liu

Applied and Computational Mathematics, NIST

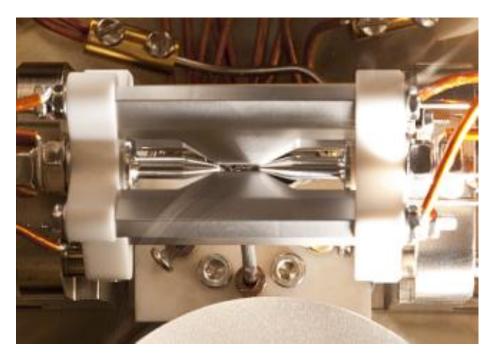
Joint work with: Steve Flammia, David Gross, Stephen Becker, Brielin Brown, Jens Eisert

This talk

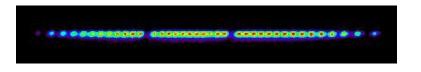


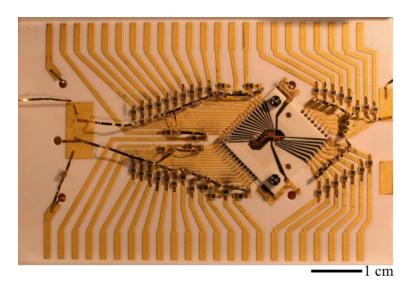
- A measurement problem: quantum state tomography
 - Solution using compressed sensing
- New result: "universal" low-rank matrix recovery
 - Why it works: geometric intuition
 - Proof ideas

- Want to characterize the state of a quantum system
- Example: ions in a trap

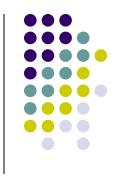


Blatt group, Univ. Innsbruck





Wineland group, NIST-Boulder



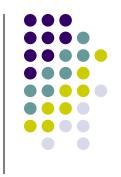
- n ions = n qubits
 - Current experiments: 8 to 14 qubits in a single trap
 - Future goal: 50-100 qubits, multiple interconnected traps
- State of n qubits is described by a density matrix p
 - Dimension d x d, where d = 2ⁿ
 - Positive semidefinite matrix w/ trace 1
 - Challenges: large dimension, most matrix elements are small (~1/sqrt(d))

- We can measure Pauli matrices
 - Tensor products of 2x2 matrices

•
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

•
$$A \times B = \begin{bmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{bmatrix}$$

- For any Pauli matrix P, we can estimate the "expectation value" Tr(Pp)
 - Prepare the quantum state ρ, measure P, observe ±1, repeat many times, average the results



- Pauli matrices form an orthogonal basis for Cdxd
- Simple tomography:
 - For all Pauli's P, estimate expectation values Tr(Pρ)
 - Reconstruct ρ by linear inversion, or maximum likelihood
- This is very slow!
 - O(d³) time measure d² Pauli matrices, ~d times
 - Takes hours, for an ion trap with 8-10 qubits
 - Some details omitted…

Quantum state tomography via compressed sensing



(Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

- For many interesting quantum states, ρ is low-rank
 - Pure states => rank 1
 - Pure states w/ local noise => "effective" rank dε
- O(rd) parameters, rather than d^2 (where $r = rank(\rho)$)
 - Can we do tomography more efficiently? Yes!
 - Using an incomplete set of O(rd) Pauli matrices? Yes!
 - How to choose this set? At random!
 - How to reconstruct ρ? Convex optimization!

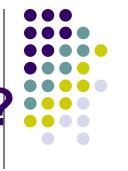
Quantum state tomography via compressed sensing

(Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

- For any matrix ρ (of dimension d and rank r):
- Choose a random set Ω of O(rd log²d) Pauli matrices
- Then with high probability (over Ω), one can uniquely reconstruct ρ:
 - Estimate b(P) ≈ Tr(Pρ) (for all P in Ω)
 - Solve a convex program: argmin_X Tr(X) s.t. X ≥ 0 and |Tr(PX)-b(P)| ≤ ε (for all P in Ω)

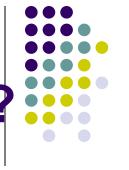
Favors low-rank solutions

Where did this idea come from?



- Medical imaging (CAT scans)
 - Reconstruct an image from a (rather incomplete) subset of its Fourier components
 - Naive reconstruction produces lots of artifacts; regularize by minimizing the L1 norm
 - Works well when the true image F is piecewise constant, so its derivative F' is sparse
 - Need O(k polylog n) Fourier components, when F' has k spikes and dimension n
 - Fourier vectors are "incoherent" wrt sparse vectors: $||f||_{\infty} \le (1/\sqrt{d}) ||f||_2$ (Candes, Romberg & Tao, 2004)

Where did this idea come from?



- From sparse vectors to low-rank matrices
 - L1 norm => nuclear norm
 - Sum of singular values, aka, trace norm, Schatten 1-norm
 - (Recht, Fazel & Parrilo, 2007)
 - See also work on "matrix completion"
 - Reconstruct a low-rank matrix M from a subset of entries
 - Assume singular vectors of M are "incoherent" wrt std basis
 - (Candes & Recht, 2008; Candes & Tao, 2009)
 - Fourier vectors => Pauli matrices
 - Pauli matrices are "incoherent" wrt low-rank matrices:
 ||P|| ≤ (1/√d) ||P||_F
 - (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

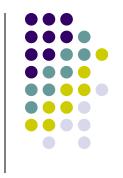
New result: "universal" low-rank matrix recovery

- (Liu, 2011)
- For any matrix ρ (of dimension d and rank r):
 - Choose a random set Ω of O(rd log⁶d) Pauli matrices
 - Then with high probability (over Ω),...
 - One can uniquely reconstruct ρ:
 - Estimate the expectation values Tr(Pp) (for all P in Ω)
 - Solve a convex program
- Can fix the set Ω once and for all!
 - That Ω will work for every rank-r matrix ρ it is "universal"
 - Actually, most choices of Ω will have this property!

Two different pictures of state space

- Original results on matrix completion / compressed tomography
 - "Dual certificates"
 - Local properties of state space around a point p
- New result "universal" matrix recovery
 - "Restricted isometry property" (RIP)
 - Global properties: whole state space can be embedded (w/ small distortion) into R^m, m = O(rd polylog d)

Some notation



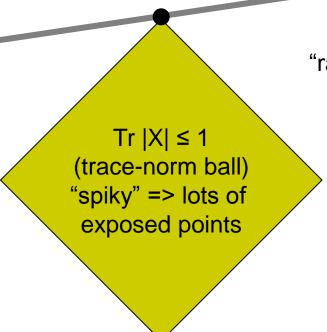
- Sampling operator: R(ρ) = [Tr(Pρ)]_{P in Ω}
 - Returns a vector of Pauli expectation values
 - ρ = unknown state
 - Ω = subset of Pauli operators
 - In a real experiment, after measuring P in Ω, we get b ≈ R(ρ)
- Solve: argmin_X Tr|X| s.t. ||R(X)-b||₂ ≤ ε, X ≥ 0

What happens around p

Unique solution:

$$X = \rho$$

(low rank => exposed point
 of the tr-norm ball)



R(X) = b
(set of feasible solutions)
"random" and "incoherent" =>
misaligned with the faces
of the tr-norm ball

What happens around p

- Hyperplane {X : R(X) = b} is "misaligned" with the faces of the trace-norm ball
 - Any perturbation $X = \rho + \delta$ either changes the value of R(X), or increases the trace norm of X
 - "Dual certificate"
- Key facts
 - Measurements are "incoherent": ||P|| ≤ d^{-1/2} ||P||_F
 - E.g., Pauli matrices, Gaussian random matrices
 - For each ρ, we choose a random hyperplane
 - It's likely to be good

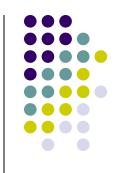
A global picture

- Sampling operator $R(\rho) = [Tr(P\rho)]_{P \text{ in } \Omega}$, $|\Omega| \sim rd \log^6 d$
- Restricted isometry property (RIP) (w/ rank r, error δ): for all X with dim. d and rank r,

$$(1-\delta) ||X||_2 \le ||R(X)||_2 \le (1+\delta) ||X||_2$$

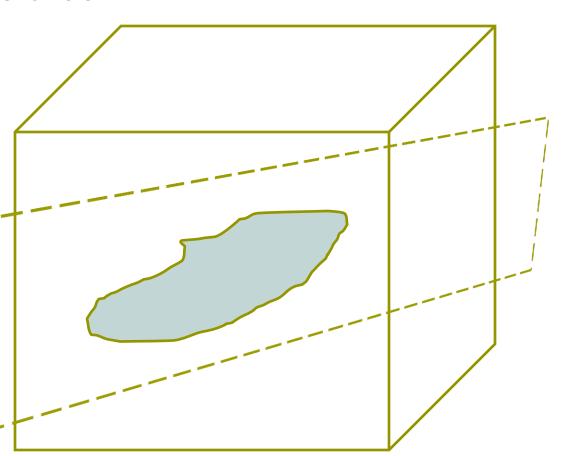
- "Embedding the manifold of low-rank matrices into a low-dimensional linear space"
- This implies universal low-rank matrix recovery

A global picture

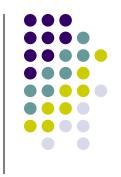


The manifold of pure states

- A curved surface,
 w/ real dim. ~d
- Naturally defined in Euclidean space w/ dim. d²
- But can be embedded
 (w/ minor distortion)/
 in a subspace
 w/ dim. O(d log⁶d)



A global picture



- Why is this embedding possible?
 - Measurements are "incoherent": ||P|| ≤ d^{-1/2} ||P||₂
 - E.g., Pauli matrices, Gaussian random matrices
 - For any low-rank state, the Pauli coefficients are fairly uniform (not peaked)
 - So it's enough to sample a random subset of them
 - Hard part: showing that this is true "uniformly" over all low-rank states
 - Covering the trace-norm ball "entropy argument"

The rest of this talk

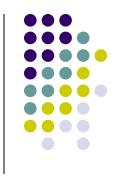
- Why "universality" is useful
 - Error bounds: what happens when ρ is full-rank?
 - Sample complexity: how many copies of ρ are needed for tomography?
- Proof ideas
 - Entropy argument
- Some practical issues

Error bounds for compressed tomography (Liu, 2011)

- Reconstructing a full-rank state ρ
 - Intuition: if we measure O(rd log⁶d) Pauli's, we should be able to reconstruct the first r eigenvectors of ρ (call this ρ_r)
 - Theorem: we obtain an estimate σ such that $\|\rho \sigma\|_2^2 \le (\text{polylog d}) \|\rho \rho_r\|_2^2$
 - Much stronger than error bounds using dual certificate
 - Combining RIP result (Liu, 2011) with error bound from (Candes and Plan, 2011)

Sample complexity

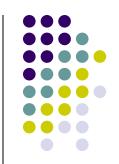
(Flammia, Gross, Liu & Eisert, 2012)



- Compressed tomography uses fewer measurement settings m
- But maybe we pay a price in higher sample complexity?
 - In practice, answer seems to be no!
 - Total sample complexity stays the same for all m in the range: rd polylog d ≤ m ≤ d²
 - RIP-based analysis confirms this (up to log factors)!
 - Convenient when it is easier to repeat a measurement than to change measurement settings

Sample complexity

(Flammia, Gross, Liu & Eisert, 2012) (da Silva, Landon-Cardinal & Poulin, 2011; Flammia & Liu, 2011)



Using Pauli measurements:

	Compressed tomography (unknown state is approx. low-rank)	Fidelity estimation (target state is pure)
# of parameters to be learned	O(rd)	1
# of Pauli operators ("meas. settings")	O(rd polylog d)	O(1)
# of copies of unknown state ("sample complexity")	O(r ² d ² polylog d)	O(d)

Proof ideas

- Restricted isometry property (RIP)
- RIP implies low-rank matrix recovery
 - (Recht, Fazel & Parrilo, 2007; Candes & Plan, 2010)
- Pauli measurements obey RIP
 - (Liu, 2011)

Operators that obey RIP

- Proof ideas:
 - Previous work: RIP for Gaussian random matrices:
 use "union bound" over all rank-r matrices (Recht et al, 2007)
 - Our work: RIP for random Pauli matrices:
 use "entropy argument" improve on union bound,
 by keeping track of correlations (Rudelson & Vershynin, 2006)
 - Prove bounds on covering numbers, using entropy duality (Guedon et al, 2008)

Pauli measurements obey RIP (1)

- Let R be the random Pauli sampling operator
- Proof ideas:
- Random variables taking values in a Banach space
 - Consider self-adjoint linear operators M: C^{dxd} → C^{dxd}
 - Define the norm $||\mathbf{M}||_{(r)} = \sup_{X \text{ in } U} |\text{Tr}(X^+\mathbf{M}(X))|$
 - $U = \{ X \text{ in } C^{dxd} \text{ s.t. } ||X||_2 \le 1, \text{ rank}(X) \le r \}$
- We want to show that $||\mathbf{R}^*\mathbf{R} \mathbf{1}||_{(r)} < 2\delta \delta^2$
 - Construct R by sampling Pauli matrices iid at random
 - R*R is a sum of iid random variables, E(R*R) = 1
 - Bound E(||R*R 1||_(r)), then use tail bound

Pauli measurements obey RIP (2)

- Dudley's inequality:
 - Gaussian process: family of rv's G(X) (for all X in U)
 - $U = \{ X \text{ in } C^{dxd} \text{ s.t. } ||X||_2 \le 1, \text{ rank}(X) \le r \}$
- E[$\sup_{X \text{ in } U} G(X)$] \leq (const) · $\int_{\epsilon \geq 0} \log^{1/2} N(U, d_G, \epsilon) d\epsilon$
 - d_G is a metric: $d_G(X,Y) = (E[(G(X)-G(Y))^2])^{1/2}$ (measures strength of correlation b/w G(X) and G(Y))
 - N(U,d_G,ε) is a covering number:
 # of balls of radius ε needed to cover U
 - Integrate over different scales 0 < ε < ∞

Pauli measurements obey RIP (3)

- Bounding the covering numbers N(U,d_G,ε)
 - Let B₁ be the trace-norm ball
 - Define a semi-norm on C^{dxd} , $||M||_X = \max_{P \text{ in } \Omega} |Tr(P^+M)|$
 - Problem reduces to bounding $N(B_1, ||\cdot||_X, \epsilon)$
 - Trivial bound:
 N(B₁, ||·||_X, ε) ≤ (polynomial in 1/ε, exponential in d²)
 - Clever bound:
 N(B₁, ||·||_x, ε) ≤ (exponential in 1/ε², quasipolynomial in d)

Pauli measurements obey RIP (4)

- Bounding $N(B_1, ||\cdot||_X, \epsilon)$ via entropy duality
 - Rewrite it as:
 N[S: (C^{dxd}, trace norm) → (C^m, L_∞ norm)]
 - This is related to the dual covering number:
 N[S*: (C^m, L₁ norm) → (C^{dxd}, operator norm)]
 - Which we can bound by known techniques... (B. Maurey)

Continuous-variable systems

(Ohliger, Nesme, Gross, Liu & Eisert, 2011)

 Instead of an orthonormal operator basis, use a tight frame {w_a} (w.r.t. a probability measure μ):

$$\int w_a Tr(w_a^+ \rho) d\mu(a) = \rho/d^2$$
, for all ρ

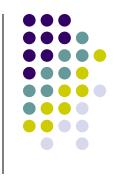
• Incoherence condition: $||w_a|| \le O(1/\sqrt{d})$

Continuous-variable systems

(Ohliger, Nesme, Gross, Liu & Eisert, 2011)

- Example: states with up to n photons (in a single mode)
 - Let the w_a be weighted displacement operators
 - Sample a from a Gaussian of width ~sqrt(n)
 - These form a tight frame
 - The w_a are incoherent!
 - Truncating to low-energy subspace
 - Expectation values Tr(w_a+ρ) can be estimated using homodyne measurements
 - Fourier transform of the Wigner function

Some practical issues



- Different estimators:
 - Trace min: $argmin_X Tr(X) s.t. X \ge 0$, $||R(X)-b||_2 \le \varepsilon$
 - Dantzig selector: $argmin_X Tr(X) s.t. X \ge 0$, $||R^*(R(X)-b)|| \le \varepsilon$
 - Lasso: $\operatorname{argmin}_{X} ||R(X)-b||_{2}^{2} + \lambda Tr(X) \text{ s.t. } X \ge 0$
 - Regularized MLE: $\operatorname{argmin}_X \log L(X|b) + \lambda Tr(X)$ s.t. $X \ge 0$ Other kinds of measurements (besides expectation values)?

Some practical issues

- How to solve the trace-minimization convex program?
- Interior-point SDP solvers
 - Very accurate, fast enough for 6 qubits
- First-order methods
 - Can handle very large instances, but less accurate?
 - Careful: objective function is not smooth!
 - E.g., singular-value thresholding, gradient descent on the Grassmannian

Open questions

- Different motivations for compressed sensing?
 - Fewer quantum measurements?
 - Less classical postprocessing?
- Can we use these methods to do other things?
 - Higher-order tensors?
 - Machine learning: matrix completion, learning HMM's

